Review - Units Matching | 1. | Time | A) | amperes (A or amps) | |-----|-----------------------------|----|--| | 2. | Distance or Height | B) | Hertz (Hz) | | 3. | Velocity | C) | Joules (J) | | 4. | Acceleration | D) | Joules (J) | | 5. | Force | E) | grams/Liter or g/mL or g/cm ³ | | 6. | Mass | F) | kilograms (kg) or grams (g) | | 7. | Kinetic or Potential Energy | G) | liters or milliliters or cm ³ | | 8. | Work | H) | meters (m) | | 9. | Force of Gravity | I) | meters (m) | | 10. | Weight | J) | meters/second (m/s) | | 11. | Power | K) | meters/second ² (m/s ²) | | 12. | Frequency | L) | Newtons (N) | | 13. | Wavelength | M) | Newtons (N) | | 14. | Density | N) | Newtons (N) | | 15. | Volume | 0) | ohms (Ω) | | 16. | Voltage | P) | seconds (s), minutes (min), hours (h) | | 17. | Current | Q) | volts (V) | | 18. | Resistance | R) | watts (W) | #### 5-Minute Lesson - Objective 5.01 #### **Dalton**: - 1) All matter is made of atoms. (True) - 2) Atoms are indivisible and indestructible. (False → Atoms are divisible because they are made of even smaller particles the proton, neutron, and electron). - 3) All atoms of the same element are the identical (False \rightarrow isotopes of the same element have different numbers of neutrons.). All atoms of different elements are different (True \rightarrow each element has its own number of protons (atomic number)). - 4) Atoms combine in whole-number ratios to form compounds \rightarrow H₂O (2:1 ratio) (True) #### Thomson: - Sent an electric current through a gas in a cathode ray tube & discovered the electron. - Came up with the **Plum Pudding Model** = the atom is a ball of positive charge with negative charges floating in it. #### **Rutherford:** - Shot alpha particles at gold foil. - \circ Most of the particles went straight through \rightarrow The atom is mostly empty space. - Some of the particles bounced back → The atom contains a small, dense, positively-charged nucleus. #### Bohr: - Planetary Model Electrons circle the nucleus like planets orbit the sun. - Electrons occupy energy levels. #### **Electron Cloud Model** - Electrons **do NOT travel in orbits** like Bohr thought, but they **do occupy energy levels.**We only know the **probability** of finding an electron in a certain place. # Quiz - Objective 5.01 <u>Identify the scientist or model</u>: Dalton, Bohr, Electron Cloud Model, Rutherford, Thomson (May be used more than once.) - _ 1. Gold Foil Experiment - 2. Cathode Ray Tube - 3. Planetary Model - 4. Said that atoms combine in whole-number ratios to form molecules - 5. Determined that we cannot know the exact location of electrons - 6. Discovered the electron - 7. Discovered the nucleus - 8. Discovered that atoms are mostly empty space # Which 2 of Dalton's statements are NOT true according to our current understanding of the atom? - 1. Atoms of different elements are always different. - 2. Atoms of the same element are always the same. - ___ 3. All matter is made up of atoms. - 4. Atoms combine in whole number ratios. - ____ 5. Atoms cannot be divided into smaller particles. # <u>Identify the scientist or model</u>: Dalton, Bohr, Electron Cloud Model, Rutherford, Thomson (May be used more than once.) # 7-Minute Lesson - Objective 5.02 | Subatomic Particle | Charge | Location | |--------------------|---------------------|-------------------| | Proton | Positive (+) | Nucleus | | Neutron | Neutral (no charge) | Nucleus | | Electron | Negative (-) | Energy Levels | | | - | (outside nucleus) | ^{*}Most of the mass of the atom is found in the nucleus (protons and neutrons). Electrons are tiny!!! **Atomic Number:** # of protons Mass Number: # of protons + neutrons # How many protons, neutrons, and electrons? **15 protons** - from atomic number **16 neutrons** - mass number minus atomic number **18 electrons** - 3- charge means gained 3 electrons. Take the # of protons (15) and add 3. 20 protons - from atomic number on periodic table- 19 neutrons - mass number minus atomic number **20 electrons** – no charge (same as # of protons) **Ca**Calcium 40.08 **Isotopes** – same element, different number of neutrons (different mass). Ex. Carbon-12 and Carbon-14 (both have 6 protons, but one has 6 neutrons and the other has 8 neutrons) # Which isotope is more common: Chlorine-35 or Chlorine-37? (answer: chlorine-35 because the average atomic mass is closer to 35 than to 37) | 17 | | |----------|------------------------| | Cl | | | Chlorine | Average | | 35.45 ◆ |
Atomic Mass | | | | #### **Bohr models** - Protons and neutrons in the nucleus - Electrons in energy levels → | Energy | Max # | |--------|-------| | Level | of e- | | 1 | 2 | | 2 | 8 | | 3 | 18 | | 4 | 32 | # Quiz - Objective 5.02 #### 1) Fill in the table: | | Protons | Neutrons | Electrons | |--------------------|---------|----------|-----------| | 39 _{x-1+} | | | | | 19 ^K | | | | | Sr-88 | | | | | 15 _N 3- | | | | # 2) Circle the two that are isotopes: | 14 _x | 14
_X | 15 _v | 15 _v | |-----------------|----------|-----------------|-----------------| | 5 ^ | 7 " | 7 ^ | 6 ^ | ## 3) Which element is shown in the Bohr Model? - a) Magnesium-11 - b) Magnesium-23 - c) Sodium-23 - d) Sodium-12 # 5-Minute Lesson - Objective 5.03 <u>Physical properties</u> – state (solid, liquid, gas), density, color, hardness, electrical conductivity <u>Physical changes</u> – changes in shape (cutting), phase changes (melting, etc.), dissolving | | Melting Point | Boiling Point | |-------------|---------------|---------------| | Substance A | 10°C | 250 °C | | Substance B | -40 °C | 80 °C | - At -20 °C, Substance A is a solid (-20 °C is colder than its melting point). - > At -20 °C, Substance B is a **liquid** (between the melting point and the boiling point). - At 90 °C, Substance A is a **liquid** (between the melting point and the boiling point). - At 90 °C, Substance B is a gas (90 °C is higher than the boiling point). ^{*}Temperature does not change during phase changes (melting point, boiling point) #### **Density** - $$d = \frac{m}{v}$$ mass - grams; volume - mL or L or cm³; density - g/mL or g/cm³ or g/L # Quiz - Objective 5.03 | | Melting Point | Boiling Point | Density | |---------|---------------|---------------|------------------------| | Zinc | 420°C | 907°C | 7.14 g/cm ³ | | Mercury | -39 °C | 357 °C | 13.6 g/cm ³ | - 1) Zinc is a [solid, liquid, or gas?] at 300 °C. - 2) Zinc is a [solid, liquid, or gas?] at 500 °C. - 3) Mercury is a [solid, liquid, or gas?] at 300 °C. - 4) Mercury is a [solid, liquid, or gas?] at 500 °C. - 5) If an unknown substance has a mass of 20 g and a volume of 1.47 cm³, is it zinc or mercury? - 6) What is the volume of a substance with a density of 12 g/mL and a mass of 6 g? # 7) Use the Heating Curve. What phase(s) would you see at: Point 1. Point 2. Point 3. Point 4. Point 5. - 8) What is the melting point of this substance? - 9) What is the boiling point of this substance? - 10) Is this substance water: Yes/No? #### 5-Minute Lesson - Objective 6.01 Periodic Table: Columns = Groups or Families Rows = Periods | | Family Name | # of Valence e- | Charge | |------------|-----------------------|-----------------|---------------------------| | Group 1 | Alkali Metals | 1 | 1+ | | Group 2 | Alkaline Earth Metals | 2 | 2+ | | Group 3-12 | Transition Metals | 3-12 | 1+, 2+, or 3+ (generally) | | Group 13 | Boron Family | 3 | 3+ | | Group 14 | Carbon Family | 4 | 4+ | | Group 15 | Nitrogen Family | 5 | 3- | | Group 16 | Oxygen Family | 6 | 2- | | Group 17 | Halogens | 7 | 1- | | Group 18 | Noble Gases | 8 | 0 | | _ | | *Except: He (2) | | Metals - left side of zig-zag line, shiny, ductile, malleable, lose electrons, high melting point and boiling point, usually solids at room temperature, excellent conductor of electricity Nonmetals - right side of zig-zag line, dull, brittle, gain electrons, low melting point and boiling point, usually liquids or gases at room temperature, poor conductor Metalloids - having a side on the zig-zag line, have characteristics of both metals and nonmetals, semiconductors Exceptions: H is on the left, but is a nonmetal; Al is on the zig-zag line, but is a metal. Atomic size (or atomic radius) increases as you move down a column. Atomic size (or atomic radius) decreases as you move from left to right across a row. **Francium** is the largest atom; **Helium** is the smallest atom. # Quiz - Objective 6.01 | 1) | What family | v are the | following | elements in? | |----|-------------|-----------|-----------|--------------| | | | | | | a. Bromine: ______ b. Lithium: _____ c. Strontium: 2) Is it a metal, nonmetal or metalloid? a. Calcium: ____ b. Gallium: ____ c. Sulfur: ____ d. Hydrogen: e. Aluminum: f. Solid at room temperature, high melting point, shiny, conducts electricity: ____ g. Gas, gains electrons, right side of the zig-zag line: ____ 3) Which has a larger atomic size? a. Magnesium or Cesium? b. Potassium or Calcium? 4) Which has a smaller atomic radius? a. Phosphorus or Fluorine? b. Sodium or Aluminum? 5) Fill in the table: | Element | # Valence e- | Charge | |------------|--------------|--------| | Calcium | | | | Phosphorus | | | | Chlorine | | | | Helium | | | #### 5-Minute Lesson - Objective 6.02 <u>Ionic Compounds</u> – made from a **metal** (or polyatomic ion) & a **nonmetal** (or polyatomic ion) - Electrons are **transferred** from the metal to the nonmetal. - Cation = positive ion (metal); Anion = negative ion (nonmetal) #### **Covalent Compounds** – made from a **nonmetal** & a **nonmetal** - Electrons are **shared**. #### Naming Compounds Ionic: no prefixes, change the ending to -ide unless ends with polyatomic ion. $CaCl_2$ calcium chloride $Ca_3(PO_4)_2$ calcium phosphate Covalent: use prefixes (no mono- for 1st element); change ending to -ide N_3O_4 trinitrogen tetroxide NO_2 nitrogen dioxide NO nitrogen monoxide 4-tetra 5-penta 6-hexa 7-hepta 8-octa 9-nona 10-deca 1-mono 2-di 3-tri # **Writing Formulas from Names** Ionic: criss-cross & reduce to find subscripts; use parentheses for polyatomic ions Potassium oxide $K^{1+}O^{2-} \rightarrow K_2O$ Magnesium phosphate $Mq^{2+}PO_4^{3-} \rightarrow Mq_3(PO_4)_2$ Covalent: prefixes tell you the subscripts Disulfur trioxide S_2O_3 10-Minute Lesson – Objectives 6.04 and 6.05 # 4 Indications that a Chemical Reaction has taken place: - 1) Formation of a Gas - 2) Formation of a Precipitate (a solid when 2 liquids react) - 3) Release or absorption of heat or light (energy) - 4) Drastic color change Types of Physical Changes: Phase Changes (Melting, etc.), Dissolving, Change in shape (cutting) <u>Exothermic Reactions</u> – Reactions that release energy (feel hot) <u>Endothermic Reactions</u> – Reactions that absorb energy (feel cold) #### **Solution Terms** <u>Solute</u> – the substance that dissolves (ex. salt) <u>Solvent</u> – the substance that the solute is dissolved into (ex. water) #### To speed up dissolving: - Stir it, Heat it up, increase the surface area (crush it) - The higher the concentration of a solution, the longer it takes to add more solute. #### **Solubility Curves** - <u>For Solids</u>: As the temperature increases, you can dissolve <u>more</u> in the solution <u>Saturated</u> – solution holds the maximum amount of solute (on the line) <u>Unsaturated</u> – solution holds less than the maximum amount (less than the line) <u>Supersaturated</u> – solution holds more than the maximum amount (higher than the line) #### **Acids and Bases** Acids - Ex. HCl, H2SO4; releases H+ when dissolved in water, sour, corrosive, turns pH paper red $\underline{\text{Bases}}$ – Ex. NaOH, Mg(OH)₂; releases **OH**- when dissolved in water, bitter, corrosive, slippery, turns pH paper **blue**; turns phenolphthalein **bright pink** Neutral – Ex. Water Neutralization Reaction: Acid + Base \rightarrow Salt + Water HCl + NaOH \rightarrow NaCl + H₂O #### **Electrical Conductivity** Ionic Compounds & Acids conduct electricity when dissolved. Covalent compounds do not! # Quiz - Objectives 6.04 and 6.05 | 1) Is this a che | emical reaction | or a <u>ph</u> | <u>vsical</u> | change? | |------------------|-----------------|----------------|---------------|---------| |------------------|-----------------|----------------|---------------|---------| - a. Burning Wood: _____ - b. Boiling: _____ - c. Rusting: - d. Dissolving: - e. Putting zinc in hydrochloric acid and producing hydrogen: _____ - 2) In a carbonated soda, which is the **solute** and which is the **solvent**? - a. Carbon dioxide: - b. Water: - 3) Is this exothermic or endothermic? - a. Burning candle: _____ - b. Baking a cake: _____ - c. Freezing: _____ - d. Melting: - 4) Will it conduct electricity when dissolved? - a. SO₃: _____ - b. NaCl: - 5) Acid or Base? - a. Ca(OH)₂: _____ - b. HBr: _____ - c. H₂SO₄: _____ - d. Turns pH paper red: _____ - e. Bitter: _____ - f. pH > 7: _____ - 6) Use the Solubility Curves on the right → - a. As temperature increase, the amount of KClO₃ that can be dissolved [increases or decreases?]. - b. At 50°C, is the solution saturated, unsaturated or supersaturated? - i. 113 g NaNO_3 : - ii. 120 g NaNO₃: _____ - iii. 100 g NaNO₃: _____ #### 2-Minute Lesson - Objective 6.06 **Nuclear Reactions** | Nuclear Reactions | | | | | |-------------------|------------------------------|--------|--|--| | | What is given off by nucleus | Charge | | | | Alpha Decay | 4
2He | 2+ | | | | Beta Decay | 0
-1 ^e | 1- | | | | Gamma Decay | Gamma Ray (energy) | 0 | | | Fission - Large nucleus splits into 2 smaller nuclei <u>Fusion</u> – 2 small nuclei **fuse** together to form one larger nucleus. # Quiz - Objective 6.06 1. Identify the reaction as alpha decay, beta decay, gamma decay, fission, or fusion. 2. Complete the nuclear reactions: ${}^{15}_{N} \rightarrow {}^{4}_{2}$ + _____ #### URANIUM DISINTEGRATION SERIES Atomic Number and Chemical Symbol - 3. Use the Uranium Disintegration Series - a) How many alpha decays? ____ - b) How many beta decays? ___ - c) When U-234 decays, it undergoes [alpha or beta?] decay. # 4. Which way would the path of the particle bend? UP or DOWN? ## NEGATIVELY-CHARGED PLATE UP or DOWN or would not bend? UP or DOWN or would not bend? UP or DOWN or would not bend? # 5-Minute Lesson – Objective 2.01 – CONCEPT review Frame of Reference – what you compare the motion of an object to; how fast an object is moving depends on what you compare it to (All motion is relative!) <u>Distance</u>- Total path traveled Displacement- An object's change in position (straight-line distance from start to endpoint). Speed – distance traveled per time (30 m/s) Velocity – speed with direction (30 m/s, north) Average Speed = total distance traveled / total time Acceleration-Change in velocity over time (speeding up, slowing down, changing direction)-m/s² # Slope of a distance-time graph: velocity (speed) - Therefore, positive slope means positive velocity (moving forward). - Zero slope means zero velocity (not moving) - Changing slope (curve) means changing velocity (acceleration). #### Slope of a velocity-time graph: acceleration - Positive slope means positive acceleration (speeding up) - Negative slope means negative acceleration (slowing down) - Zero slope means zero acceleration (moving at constant speed) - An object that is not moving has a velocity of 0. # Quiz - Objective 2.01 # Use the diagram to the right. - 5. What is the object's distance? - 6. What is the object's displacement? __ # **Use the Distance-time Graph:** 1. Is the object at rest, moving at constant velocity, or accelerating? Segment A: _____ Segment B: _____ Segment C: Segment D: ____ 2. What is the object's distance at 22 seconds? # **Use the Velocity-time Graph:** 3. Is the object at rest, moving at constant velocity, or accelerating? Segment A: _____ Segment B: _____ Segment C: _____ Segment D: 4. What is the object's velocity at 16 seconds? # 5-Minute Lesson – Objective 2.02 (CONCEPT review) - Acceleration due to Gravity (g): All objects on Earth accelerate towards the ground at an acceleration of 9.8 m/s/s. - Weight (F_{α}) = the force of gravity acting on an object - Net Force: overall force acting on an object - Friction Force a force that opposes the motion of an object - Newton's 3 Laws of Motion - o <u>1st Law (Law of Inertia)</u> An object at rest will stay at rest. An object in motion will stay in motion at constant velocity (same speed, straight line). - Inertia: resistance to a change in motion; the more mass an object has, the more inertia (resistance) it has. - \circ 2nd Law (F_{net} = ma) If a net force is acting on an object, the object will accelerate. - The greater the force applied, the greater the acceleration. - The more mass an object has, the harder it is to accelerate. - o 3^{rd} Law $(F_{A \text{ on } B} = -F_{B \text{ on } A})$ For every action there is an equal but opposite reaction. ### Quiz – Objective 2.02 | I) | The <u>[mass or weight</u> | [1] of a book would be the same on Earth as on the moon. | |----------|----------------------------|--| | ^ | TC 1 ' 1 14 | | | 2) |) If a box is pushed towards the right, the direction of the friction force acting on the box is $[$ 1 | | | |----|--|--|--| | | down, left | or right?]. | | | 3) | What is th | e net force acting on a box that is being pulled to the right with a 50 N force and to | | | | the left wi | th a 10 N force? to the | | | 4) | If the mas | s of your object doubled but the force you applied to the object stayed the same, the | | | • | object wo | uld accelerate [faster or slower?]. | | | 5) | | $v(1^{st}, 2^{nd}, or 3^{rd})$? | | | | a. | If you hit a baseball, it will accelerate. | | | | b. | When you hit a baseball with a bat, the baseball also exerts a force on the bat, | | | | | causing it to recoil. | | | | c. | When you turn a corner in a car, your body wants to keep going straight. | | | | d. | When you push backwards on the water with a paddle, the canoe moves forward. | | | | e. | If you slam your brakes in a car, a canoe on the top of the car slides forward. | | #### 5-Minute Lesson – Objective 3.01 and 3.02 (CONCEPT review) <u>Kinetic Energy</u> – Energy of motion (any moving object has kinetic energy) - Joules <u>Potential Energy</u> – Stored energy (an object that is held at rest above the ground has PE) – Joules - <u>Types of PE</u>: gravitational, elastic, chemical <u>Law of Conservation of Energy</u> – Energy is neither created nor destroyed; it just changes form. - Ex. When an object falls, all of the potential energy that it started with, changes into kinetic energy as it falls and speeds up. <u>Work</u> – to do work, you must apply a force to an object and move the object a certain distance <u>Power</u> – the amount of work done per second ### Quiz – Objective 3.01 and 3.02 - 1) The faster an object is moving, the greater its [kinetic or potential?] energy. - 2) The higher above the ground an object is, the greater its [kinetic or potential?] energy. - 3) You push against a table, but it does not move. How much work do you do? _ - 4) If a roller coaster has 50,000 J of potential energy at the top of the first hill, how much kinetic energy does it have at the lowest point? # 5-Minute Lesson – Objective 3.03 (CONCEPT review) <u>Temperature</u> – the average kinetic energy of the particles in a substance. - The faster the particles that make up an object are moving, the higher the object's temperature. <u>Heat</u> – the transfer of thermal energy from an object at a high temperature to an object at low temperature. # 3 Types of Heat Transfer - 1) Conduction heat transfer between objects that are touching - 2) <u>Convection</u> heat transfer by the rising of low density (hot) liquid/gas and the sinking of high density (cold) liquid/gas. - 3) Radiation heat transfer by electromagnetic radiation (ex. ultraviolet radiation) - Specific Heat the amount of heat needed to increase the temperature of a substance The larger the specific heat, the longer it takes to heat up and cool down. No machine is 100% efficient – some usable energy is always lost because friction changes it into heat | Quiz – Objective 3.03 | 50°C | 80°C | |--|------------|--------------| | Draw 3 arrows to show the direction of heat transfer. | 70° | C | | 2) What type of heat transfer (conduction, convection, or radiation?) | 70 | | | a. Your microwave heats your food | | | | b. A fireplace heats the entire house | | | | c. Water boiling | | | | d. You put a pan on the stove to cook food. | | | | e. The sun heats the Earth. | | | | 3) Which will heat up faster, iron (specific heat = $0.449 \text{ J/g}^{\circ}\text{C}$) or c o | opper (spe | cific heat = | | 0.385 I/a*°C)? | · • | | # 5-Minute Lesson – Objective 3.04 (CONCEPT review) Mechanical Waves - waves that require matter to travel through, ex. sound, water, earthquakes - Electromagnetic (light) waves can travel through empty space (are NOT mechanical waves) #### **Transverse waves** - crest (highest point), trough (lowest point) - amplitude (rest to crest) - wavelength (crest to crest) - ex. light wave #### Longitudinal (compressional) waves - compression (maximum density) - rarefaction (minimum density) - ex. sound wave, slinky <u>Frequency</u> - # cycles/second <u>Period</u> - # seconds/cycle #### Sound waves - Higher Amplitude → More Energy (louder) - Higher Frequency → higher pitch - Speed of sound is fastest in solids and slowest in a gas (ex. air) # **Electromagnetic waves (radiation)** - Higher frequency → shorter wavelength → higher energy - Lower frequency → longer wavelength → lower energy - Speed is fastest in a vacuum (no particles -3×10^8 m/s) and slowest in a solid. - <u>Visible light</u> the wavelength (or frequency) determines the color of the light # Quiz - Objective 3.04 - 1) A sound that is very loud (has a lot of energy) will have a very high [frequency, amplitude, or wavelength?]. - 2) A low pitch sound has a very low [frequency, amplitude, or wavelength?]. - 3) For electromagnetic waves, a high energy wave has a high [frequency or wavelength?] and a short [frequency or wavelength?]. - 4) Which type of electromagnetic wave has the higher energy: radio wave or gamma ray? - 5) Which type of electromagnetic wave has the higher energy: red light or violet light? - 6) Which type of electromagnetic wave has a shorter wavelength: microwave or infrared? - 7) Which type of electromagnetic wave has a higher frequency: ultraviolet or violet light? - 8) Which type of electromagnetic wave has the smaller frequency: x-rays or gamma rays? - 9) The color of visible light is determined by the [wavelength, amplitude, or speed] of the wave. - 10) Which travels faster: light or sound? - 11) Light travels fastest through a [vacuum, gas, liquid, or solid?]. - 12) Sound travels fastest through a [vacuum, gas, liquid, or solid?]. ### 5-Minute Lesson - Objective 4.01 and 4.02 (CONCEPT review) Static electricity – the build-up of excess (stationary) charges - Like charges repel and opposite charges attract - On drier days it is easier for objects to become charged (charges build up in one place rather than escaping onto water molecules in the air). # Types of charging: - 1) <u>Friction</u> charging by rubbing - 2) Conduction charging by touching - 3) Induction charging by holding a charged object close to a neutral object <u>Current Electricity</u> – moving charges (open circuit – OFF) Series Circuit – only one path for current to flow; same current throughout; all lightbulbs have to share the voltage of the battery; dimmer bulbs than parallel; if one goes out, they all go out. Parallel Circuit – multiple paths, current splits to go through separate paths & recombines when returns to battery (current is different in different places); draws more current out of the battery than series circuits; each lightbulb gets entire voltage of battery; brighter than series; if one goes out, the rest stay on. # Quiz - Objective 4.01 and 4.02 - 1) These pith balls have the [same or opposite?] charge. - 2) Figure A is a [series or parallel?] circuit: - a. If R3 went out, which bulbs would light? - b. Would the current be the same at point 2 compared to point 3? _____ - 3) Figure B is a [series or parallel?] circuit: - a. If R1 went out, which bulbs would light? _____ - b. Would the current be the same at point 1 and point 4? - 4) Lightbulbs in [series or parallel?] are brighter than those in [series or parallel?]. - 5) The higher the voltage in a circuit, the [higher or lower?] the current. - 6) The higher the resistance in a circuit, the [higher or lower?] the current.(cont'd next page...) #Your Ticket to Passing Physical Science - #15 - 7) In this complex circuit: - a. If R1 went out, which bulbs would light? - b. If R2 went out, which bulbs would light? ___ - c. If R3 went out, which bulbs would light? _ Series-parallel # 5-Minute Lesson – Objective 4.03 (CONCEPT review) Magnets (have a N and S pole) - Magnetic domains if the domains (mini-magnets) inside a material are aligned, the material is magnetized. - o To demagnetize: drop it, hammer it, heat it (so the domains are not aligned) - Opposite poles attract, like poles repel - Magnetic field is strongest near the poles. Electromagnets – a wire that a current is traveling through will have a magnetic field around it. - If you coil a wire into a solenoid & put a piece of iron inside, the iron will become - Generators changes mechanical energy into electrical energy - o When you rotate a coil of wire in a magnetic field, electrical current will start the flow through the wire. - Electric Motors changes electrical energy into mechanical energy - A coil of wire with current moving through it will rotate when placed in a magnetic field. # Quiz - Objective 4.03 1) Which location would have the strongest magnetic field: A or B? - 2) In an electromagnet, the strength of the magnet will increase if you: - a. [increase or decrease?] the number of coils. - b. [increase or decrease?] the voltage of the battery. - c. [increase or decrease?] the current going through the wire. - 3) The poles will switch on an electromagnet if you [change the voltage of the battery, decrease the number of coils, or change the direction of the current?]. - 4) Do the field lines show that these poles are <u>attracting or repelling</u> each other?